

The NOvA Experiment

P5 Fermilab 18 April 2006

Gary Feldman

NO ν A: NuMl Off-Axis ν_e Appearance Experiment

- NOvA is a proposed 2nd generation experiment on the NuMI beamline. Its Far Detector will be a 25 kT totally active, tracking liquid scintillator calorimeter located near Ash River, MN, 810 km from Fermilab and 12 km off the center of the NuMI beamline.
- Its main physics goal will be the study of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations at the atmospheric oscillation length.
- Its unique characteristic is its long baseline, which allows access to matter effects, which can be used to determine the ordering of the neutrino mass states.

The NOvA Collaboration

- The NOvA Collaboration consists of 142 physicists and engineers from 28 institutions:
 - Argonne, Athens, Caltech, College de France, Fermilab, Harvard, Indiana, ITEP, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, Northern Illinois, Ohio, Ohio State, Oxford, Rutherford, Rio de Janeiro, South Carolina, SMU, Stanford, Texas, Texas A&M, Tufts, UCLA, Virginia, Washington, William and Mary
- Five Italian universities with about 20 senior physicists are actively discussing joining NOvA.
- Based on MINOS experience, we expect to have about 50 students when the experiment runs.

Why Off-Axis?

- Both Phase 2 experiments, NOvA and T2K are sited off the neutrino beam axis. This yields a narrow band beam:
 - More flux and less background (v_e 's from K decay and higherenergy NC events)

Gary Feldman

P5 at Fermilab

18 April

4

Why Ash River?

The Ash River site is the furthest available site from Fermilab along the NuMI beamline. This maximizes NO_VA's sensitivity to the mass ordering.

Basic Detector Element

Liquid scintillator in a 4 cm wide, 6 cm deep, 15.7 m long, highly reflective PVC cell.

Light is collected in a U-shaped 0.8 mm wavelength-shifting fiber, both ends of which terminate in a pixel of a 32-pixel avalanche photodiode (APD).

The APD has peak quantum efficiency of 85%. It will be run at a gain of 100. It must be cooled to -15°C and requires a very low noise amplifier.

The Far Detector

The Near Detector

The Integration Prototype Near Detector

We plan to have a prototype version of the Near Detector running in the MINOS surface building by the end of 2007. It will detect a 75 mr off-axis NuMI beam, dominated by *K* decays.

Gary Feldman

P5 at Fermilab

18 April

9

Event Quality

Longitudinal sampling is 0.15 X0, which gives excellent μ -e separation.

A 2-GeV muon is 60 planes long.

Neutrino Oscillations

- Neutrino oscillations occur because the weak eigenstates and not identical to the mass eigenstates.
- The relationship between the weak eigenstates and the mass eigenstates is given by a unitary rotation matrix:

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Mixing Matrix

 The mixing matrix can be specified by 3 angles and one complex phase:

$$\begin{vmatrix} v_{\ell} \rangle = \textbf{\textit{U}} & v_{n} \rangle, \quad \text{where} \quad (\textbf{\textit{c}}_{ij} \equiv \cos \theta_{ij}, \quad \textbf{\textit{s}}_{ij} \equiv \sin \theta_{ij}) \\ \textbf{\textit{U}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \textbf{\textit{c}}_{23} & \textbf{\textit{s}}_{23} \\ 0 & -\textbf{\textit{s}}_{23} & \textbf{\textit{c}}_{23} \end{pmatrix} \begin{pmatrix} \textbf{\textit{c}}_{13} & 0 & \textbf{\textit{s}}_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\textbf{\textit{s}}_{12} & \textbf{\textit{c}}_{12} & 0 \\ -\textbf{\textit{s}}_{12} & \textbf{\textit{c}}_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \textbf{Atmospheric} \qquad \textbf{Atmospheric} \\ \textbf{\textit{v}}_{\mu} \leftrightarrow \textbf{\textit{v}}_{\tau} \qquad \textbf{\textit{v}}_{e} \leftrightarrow \textbf{\textit{v}}_{\mu}, \textbf{\textit{v}}_{\tau} \\ \end{pmatrix} \begin{matrix} \textbf{\textit{c}}_{ij} \equiv \sin \theta_{ij} \\ \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}}_{12} & \textbf{\textit{o}}_{12} \\ \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}} & \textbf{\textit{o}} \\ \textbf{\textit{o}}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Gary Feldman

P5 at Fermilab

18 April

12

Vacuum Oscillations

When a 2 x 2 oscillation is sufficient, in vacuum,

$$i\hbar \frac{d}{dt} \begin{pmatrix} v_{e} \\ v_{x} \end{pmatrix} = H \begin{pmatrix} v_{e} \\ v_{x} \end{pmatrix}, \quad H = \begin{pmatrix} \frac{\Delta m^{2}}{4E} \cos 2\theta & \frac{\Delta m^{2}}{4E} \sin 2\theta \\ \frac{\Delta m^{2}}{4E} \sin 2\theta & -\frac{\Delta m^{2}}{4E} \cos 2\theta \end{pmatrix}$$

$$P(v_{\rm e} \to v_{\rm x}) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 L}{E}\right)$$

$$\Delta m_{ij}^2 \equiv (m_i^2 - m_j^2) \text{ is in } (\text{eV} / c^2)^2,$$

L is in km, and E is in GeV

Matter Oscillations

• Matter effects: In matter v_e 's interact differently than v_x 's.

$$H = \begin{bmatrix} \frac{\Delta m^2}{4E} \cos 2\theta - \sqrt{2}G_F \rho_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & -\frac{\Delta m^2}{4E} \cos 2\theta \end{bmatrix}$$

$$\sin^2 2\theta_m = \frac{\sin^2 2\theta}{(\cos 2\theta - \sqrt{2}G_F \rho_e E / \Delta m^2)^2 + \sin^2 2\theta}$$

What We Know and What We Don't Know

Fractional Flavor Content varying $\cos \delta$

$P(v_{\mu} \rightarrow v_{e})$ (in Vacuum)

•
$$P(v_u \rightarrow v_e) = P_1 + P_2 + P_3 + P_4$$

```
• P_1 = \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m_{13}^2 L/E)
                                                                "Atmospheric"
```

• $P_2 = \cos^2(\theta_{23}) \sin^2(2\theta_{12}) \sin^2(1.27 \Delta m_{12}^2 L/E)$

• $P_3 = {}_{\perp} J \sin(\delta) \sin(1.27 \Delta m_{13}^2 L/E)$

• $P_4 = J \cos(\delta) \cos(1.27 \Delta m_{13}^2 L/E)$

where $J = \cos(\theta_{13}) \sin(2\theta_{12}) \sin(2\theta_{13}) \sin(2\theta_{23}) x$ $\sin (1.27 \Delta m_{13}^2 L/E) \sin (1.27 \Delta m_{12}^2 L/E)$

Gary Feldman P5 at Fermilab 18 April 16

solar interference

"Solar"

$P(\nu_{\mu} \rightarrow \nu_{e})$ (in Matter)

• In matter at oscillation maximum, P_1 will be approximately multiplied by $(1 \pm 2E/E_R)$ and P_3 and P_4 will be approximately multiplied by $(1 \pm E/E_R)$, where the top sign is for neutrinos with normal mass hierarchy and antineutrinos with inverted mass hierarchy.

$$E_R = \frac{\Delta m_{13}^2}{2\sqrt{2}G_E\rho_E} \approx 11 \,\text{GeV for the earth}\tilde{\textbf{G}} \,\text{crust.}$$

About a ±30% effect for NuMI, but only a ±11% effect for T2K.

However, the effect is reduced for energies above the oscillation maximum and increased for energies below.

Recent MINOS Measurement

Status of Δm_{32}^2

- The best measurement of $\sin^2(2\theta_{23})$ is from SuperK, and the best value is 1.0.
- The single best measurement of Δm_{32}^2 is now from MINOS and it is (2.7±0.3) 10⁻³ eV², when it is constrained to $\sin^2(2\theta_{23}) = 1$.
- The K2K central value of $\Delta m_{32}^2 = 2.8 \cdot 10^{-3} \text{ eV}^2$ and SuperK *L/E* central value of $\Delta m_{32}^2 = 2.4 \cdot 10^{-3} \text{ eV}^2$ are in good agreement with the MINOS value.
- Therefore, I will show calculations at Δm_{32}^2 of both 2.5 and 3.0 eV², roughly the ± 1 σ values for our present knowledge.

Parameters Consistent with a 2% $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

 $\sin^2(2\theta_{13})$ vs. $P(\bar{v}_e)$ for $P(v_e) = 0.02$

Parameters Consistent with a 2% $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

Parameters Consistent with a 2% $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

T2K-NOvA Comparison

Parameters Consistent with a 1% or 4% $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

Simulations

- The physics projections are based on a full reconstruction:
 - Raw hits are produce by a Monte Carlo simulation.
 - The hits are reconstructed into physics objects.
 - A likelihood function is constructed to separate ν_{e} events from backgrounds.
 - A cut on the likelihood function is made to maximize a figure of merit (FoM) = signal $/\sqrt{\text{background}}$.
- Last summer, two blind hand scans obtained FoM's that were 22% and 28% better than the program. The scanners concluded that the lower performance of the program was due to reconstruction errors.

Proton Plan

- The physics projections are also based on the proton plan that Pier discussed this morning.
 - FY2010: Full year down period to convert the Main Injector to a 1 MW proton source
 - Conversion of the Recycler and Accumulator into proton stackers
 - Construction of Booster-Accumulator and Accumulator-Recycler transfer lines
 - Main Injector rf upgrade
 - NuMI target upgrade
 - FY2011: 44 weeks of running; 400 kW to 700 kW
 - FY2012: 38 weeks of running; 700 kW to 1 MW
 - FY2013 and beyond: 44 weeks of running at 1 MW

Proton Plan

Degradation factors assumed:

Accelerator uptime: 85%

Average to peak: 90%

• NuMI uptime: 90%

⇒ overall efficiency: 69%

 Assumed that NOvA would begin running when 5 kT had been commissioned and would run for 6 years from the end of construction, giving a total of 60.3 10²⁰ pot.

Gary Feldman

3 σ Sensitivity to $\theta_{13} \neq 0$

P5 at Fermilab

18 April

28

Assumed Running Plan

- Although this is clearly a decision that will be made on the fly as physics unfolds, I will assume that NOvA will run equal time on neutrinos and antineutrinos.
 - Flatter response in the mass ordering and δ_{CP}
 - When a signal is seen, it gives information on the mass ordering and δ_{CP}
 - Better complementarity with T2K if it runs only neutrinos
- For the timeline, to be shown later, we will assume that the first 3 years are neutrino running and the last 3 years are antineutrino running.

Comparison of $\Delta m^2 = 0.0025$ and 0.0030 eV^2

Not a great deal of difference

Gary Feldman

Comparison to T2K and a Reactor Experiment

18 April

Comment

- There will be an ambiguity in comparing accelerator and reactor experiments if the θ_{23} mixing is not maximal.
 - Reactor experiments are sensitive to $\sin^2(2\theta_{13})$.
 - Accelerator experiments are largely sensitive to $\sin^2(\theta_{23})\sin^2(2\theta_{13})$.
 - This is the difference between $v_e \leftrightarrow v_\mu$ mixing (accelerators) and $v_e \leftrightarrow (v_\mu + v_\tau)$ mixing (reactors).
- Resolving this ambiguity is the main complementarity between the two types of experiments. It can be done if the θ_{23} mixing is sufficiently non-maximal and $\sin^2(2\theta_{13})$ is sufficiently large. (See next slide.)

95% CL Resolution of the θ_{23} Ambiguity

95% CL Resolution of the θ_{23} Ambiguity

(There is some sensitivity to the mass ordering and δ . The blue line represents an average over these parameters.)

33

Importance of the Mass Ordering

- Window on very high energy scales: grand unified theories favor the normal mass ordering, but other approaches favor the inverted ordering.
- If we establish the inverted ordering, then the next generation of neutrinoless double beta decay experiment can decide whether the neutrino is its own antiparticle. However, if the normal ordering is established, a negative result from these experiments will be inconclusive.
- To measure CP violation, we need to resolve the mass ordering, since it contributes an apparent CP violation that we must correct for.

95% CL Resolution of the **Mass Ordering**

Gary Feldman

P5 at Fermilab

18 April

Combining NOvA and T2K

Future Directions

- For the most part I want to focus this talk on the physics of the NOvA proposal as it is.
 - Both a BNL-Fermilab workshop and the new NuSAG charge are evaluating post-NOvA directions, such various additions on the NuMI beamline, or a massive detector at an underground laboratory.
- However, there is a group at Fermilab and several universities working on massive liquid argon TPC detectors. They wanted to speak here, but Abe suggested that I might say a few words about their work instead.

The Idea Is to Use LNG Storage Technology

Modularized drift regions inside tank

Excellent Pattern Recognitionand Resolution

High Efficiency and Low Backgrounds

• A blind scan of Monte Carlo events gave an 81% efficiency with sufficient neutral current rejection to get below 1/2 the intrinsic beam v_e background.

A Possible NOvA II Proposal

- Assume a NOvA-size LA detector, which would be the equivalent of 4 NOvA detectors. Add past and future NOvA runs to make an equivalent total of 6 NOvA detectors running for 6 years.
- Assume that T2K upgrades its proton source by a factor of 4.

Combining NOvA II with T2K II

Back to NO_VA: δ vs. $\sin^2(2\theta_{13})$ Contours

1 σ Contours for Starred Points

1 σ Contours for Starred Points

Gary Feldman

P5 at Fermilab

18 April

43

δ vs. $\sin^2(2\theta_{13})$ Contours: Linear vs. Logarithmic

1 σ Contours for Starred Points

Gary Feldman

P5 at Fermilab

18 April

44

δ vs. $sin^2(2\theta_{13})$ Contours: Normal vs. Inverted Mass

1 σ Contours for Starred Points

Gary Feldman F

P5 at Fermilab

18 April

45

δ vs. $\sin^2(2\theta_{13})$ Contours: 6 x NOvA

1 and 2 σ Contours for Starred Points

Measurement of $\sin^2(2\theta_{23})$

- Whether the atmospheric mixing is maximal is an important question both practically (comparison of reactor and accelerator measurements) and theoretically (Is there a symmetry that induces maximal mixing?).
- The combination of the narrow-band beam and NOvA's excellent energy resolution allows it to do a high-precision measurement of $\sin^2(2\theta_{23})$ by measuring quasielastic v_{μ} CC events.

Measurement of $\sin^2(2\theta_{23})$

If $sin^2(2\theta_{23}) = 1$, then it can be measured to 0.004.

Otherwise, it can be measured to ~0.01.

Cost

- Two weeks ago, we had a CD-1 Review, which did not object to our cost estimate.
- The estimate is \$ 226 M in FY2006 dollars, including \$ 57 M in contingency. This corresponds to \$ 247 M in actual year dollars.
- The cost in our proposal was \$ 165 M in FY2004 dollars. We have submitted a detailed explanation of the differences to P5. Short answer:
 - R&D was not included in the proposal number
 - Increases in "maturity of estimate" partially countered by our recent descope from 30 kT to 25 kT
 - The rest is largely inflation, including the cost of oil

Cost

- Inflation calculation:
 - \$ 165 M (minus oil-linked costs) FY2004 to FY2006 → \$172 M
 - + R&D \$ 12 M: \$172 M \rightarrow \$ 184 M
 - + cost of oil FY2004 to FY2006 \$ 32 M: \$184 M x \$216 M
- What about future increases in the cost of oil?
 - We have done a contingency analysis following DOE rules.
 - We have used DOE future cost of oil estimates and added an additional risk factor based on historical data using a Monte Carlo calculation and set the contingency at the 95% confidence level.

Schedule

- Apr 2006: CD-1 review. Unanimous recommendation to approve CD-1.
- Oct 2006: CD-2 review.
- Jan 2007: CD-3a
- Oct 2007: CD-3b, begin Far Detector enclosure
- Oct 2008: First module factory ready
- Jun 2009: Occupancy of the FD enclosure
- Nov 2010: 5 kT completed, start taking data
- Nov 2011: Far Detector completed

Sensitivity Schedule

- Estimated times to establish 3 σ sensitivity to $\theta_{13} \neq 0$ (normal mass ordering, $\Delta m_{32}^2 = 0.0025 \text{ eV}^2$, $\sin^2(2\theta_{23}) = 1.$, $\delta = 0$):
 - Jan 2012, if $\sin^2(2\theta_{23}) = 0.05$
 - Nov 2012, if $\sin^2(2\theta_{23}) = 0.02$
 - Aug 2014, if $\sin^2(2\theta_{23}) = 0.01$

Conclusions

- NOvA provides an effective utilization of the investment in the NuMI beamline.
- It is the right scale project for the present time. (More ambitious programs will need to wait for clarification of the ILC status.)
- It provides the information needed to plan the next step after NOvA.
- It provides the greatest reach in sin²(2θ₁₃)
- It provides the only information on the mass ordering.
- It provides low-precision data on CP violation in the lepton sector.